翻訳と辞書
Words near each other
・ Hyperbolic plane (disambiguation)
・ Hyperbolic point
・ Hyperbolic quaternion
・ Hyperbolic secant distribution
・ Hyperbolic sector
・ Hyperbolic set
・ Hyperbolic space
・ Hyperbolic spiral
・ Hyperbolic structure
・ Hyperbolic tetrahedral-octahedral honeycomb
・ Hyperbolic trajectory
・ Hyperbolic tree
・ Hyperbolic triangle
・ Hyperbolic trigonometry
・ Hyperbolic volume
Hyperbolization theorem
・ Hyperboloid
・ Hyperboloid model
・ Hyperboloid structure
・ Hyperbolus
・ Hyperborea
・ Hyperborea (album)
・ Hyperborea (band)
・ Hyperborea (collection)
・ Hyperborea (disambiguation)
・ Hyperborea (moth)
・ Hyperborean cycle
・ Hyperbow
・ Hyperbowl Plus! Edition
・ Hyperbubble


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hyperbolization theorem : ウィキペディア英語版
Hyperbolization theorem

In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.
==Statement==

One form of Thurston's geometrization theorem states:
If ''M'' is an compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of ''M'' has a complete hyperbolic structure of finite volume.
The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique.
The conditions that the manifold ''M'' should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurston geometrization conjecture.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hyperbolization theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.